import pandas as pd
df = pd.read_csv('result.csv')
df.head()
Order_ID | Product | Quantity | Price | Total | Order_Date | Address | |
---|---|---|---|---|---|---|---|
0 | 176558 | USB-C Charging Cable | 2 | 11.95 | 23.90 | 04/19/19 08:46 | 917 1st St, Dallas, TX 75001 |
1 | 176559 | Bose SoundSport Headphones | 1 | 99.99 | 99.99 | 04/07/19 22:30 | 682 Chestnut St, Boston, MA 02215 |
2 | 176560 | Google Phone | 1 | 600.00 | 600.00 | 04/12/19 14:38 | 669 Spruce St, Los Angeles, CA 90001 |
3 | 176560 | Wired Headphones | 1 | 11.99 | 11.99 | 04/12/19 14:38 | 669 Spruce St, Los Angeles, CA 90001 |
4 | 176561 | Wired Headphones | 1 | 11.99 | 11.99 | 04/30/19 09:27 | 333 8th St, Los Angeles, CA 90001 |
df.info(memory_usage='deep')
<class 'pandas.core.frame.DataFrame'> RangeIndex: 185950 entries, 0 to 185949 Data columns (total 7 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Order_ID 185950 non-null int64 1 Product 185950 non-null object 2 Quantity 185950 non-null int64 3 Price 185950 non-null float64 4 Total 185950 non-null float64 5 Order_Date 185950 non-null object 6 Address 185950 non-null object dtypes: float64(2), int64(2), object(3) memory usage: 48.0 MB
df['Order_Date'] = pd.to_datetime(df.Order_Date, format='%m/%d/%y %H:%M')
df
Order_ID | Product | Quantity | Price | Total | Order_Date | Address | |
---|---|---|---|---|---|---|---|
0 | 176558 | USB-C Charging Cable | 2 | 11.95 | 23.90 | 2019-04-19 08:46:00 | 917 1st St, Dallas, TX 75001 |
1 | 176559 | Bose SoundSport Headphones | 1 | 99.99 | 99.99 | 2019-04-07 22:30:00 | 682 Chestnut St, Boston, MA 02215 |
2 | 176560 | Google Phone | 1 | 600.00 | 600.00 | 2019-04-12 14:38:00 | 669 Spruce St, Los Angeles, CA 90001 |
3 | 176560 | Wired Headphones | 1 | 11.99 | 11.99 | 2019-04-12 14:38:00 | 669 Spruce St, Los Angeles, CA 90001 |
4 | 176561 | Wired Headphones | 1 | 11.99 | 11.99 | 2019-04-30 09:27:00 | 333 8th St, Los Angeles, CA 90001 |
... | ... | ... | ... | ... | ... | ... | ... |
185945 | 259353 | AAA Batteries (4-pack) | 3 | 2.99 | 8.97 | 2019-09-17 20:56:00 | 840 Highland St, Los Angeles, CA 90001 |
185946 | 259354 | iPhone | 1 | 700.00 | 700.00 | 2019-09-01 16:00:00 | 216 Dogwood St, San Francisco, CA 94016 |
185947 | 259355 | iPhone | 1 | 700.00 | 700.00 | 2019-09-23 07:39:00 | 220 12th St, San Francisco, CA 94016 |
185948 | 259356 | 34in Ultrawide Monitor | 1 | 379.99 | 379.99 | 2019-09-19 17:30:00 | 511 Forest St, San Francisco, CA 94016 |
185949 | 259357 | USB-C Charging Cable | 1 | 11.95 | 11.95 | 2019-09-30 00:18:00 | 250 Meadow St, San Francisco, CA 94016 |
185950 rows × 7 columns
df.info(memory_usage='deep')
<class 'pandas.core.frame.DataFrame'> RangeIndex: 185950 entries, 0 to 185949 Data columns (total 7 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Order_ID 185950 non-null int64 1 Product 185950 non-null object 2 Quantity 185950 non-null int64 3 Price 185950 non-null float64 4 Total 185950 non-null float64 5 Order_Date 185950 non-null datetime64[ns] 6 Address 185950 non-null object dtypes: datetime64[ns](1), float64(2), int64(2), object(2) memory usage: 36.8 MB
df['Month'] = df.Order_Date.dt.month
df
Order_ID | Product | Quantity | Price | Total | Order_Date | Address | Month | |
---|---|---|---|---|---|---|---|---|
0 | 176558 | USB-C Charging Cable | 2 | 11.95 | 23.90 | 2019-04-19 08:46:00 | 917 1st St, Dallas, TX 75001 | 4 |
1 | 176559 | Bose SoundSport Headphones | 1 | 99.99 | 99.99 | 2019-04-07 22:30:00 | 682 Chestnut St, Boston, MA 02215 | 4 |
2 | 176560 | Google Phone | 1 | 600.00 | 600.00 | 2019-04-12 14:38:00 | 669 Spruce St, Los Angeles, CA 90001 | 4 |
3 | 176560 | Wired Headphones | 1 | 11.99 | 11.99 | 2019-04-12 14:38:00 | 669 Spruce St, Los Angeles, CA 90001 | 4 |
4 | 176561 | Wired Headphones | 1 | 11.99 | 11.99 | 2019-04-30 09:27:00 | 333 8th St, Los Angeles, CA 90001 | 4 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
185945 | 259353 | AAA Batteries (4-pack) | 3 | 2.99 | 8.97 | 2019-09-17 20:56:00 | 840 Highland St, Los Angeles, CA 90001 | 9 |
185946 | 259354 | iPhone | 1 | 700.00 | 700.00 | 2019-09-01 16:00:00 | 216 Dogwood St, San Francisco, CA 94016 | 9 |
185947 | 259355 | iPhone | 1 | 700.00 | 700.00 | 2019-09-23 07:39:00 | 220 12th St, San Francisco, CA 94016 | 9 |
185948 | 259356 | 34in Ultrawide Monitor | 1 | 379.99 | 379.99 | 2019-09-19 17:30:00 | 511 Forest St, San Francisco, CA 94016 | 9 |
185949 | 259357 | USB-C Charging Cable | 1 | 11.95 | 11.95 | 2019-09-30 00:18:00 | 250 Meadow St, San Francisco, CA 94016 | 9 |
185950 rows × 8 columns
df.to_csv('result.csv', index=False)